Forklift Throttle Body

Forklift Throttle Body - Where fuel injected engines are concerned, the throttle body is the part of the air intake system which controls the amount of air that flows into the motor. This particular mechanism functions in response to operator accelerator pedal input in the main. Generally, the throttle body is positioned between the air filter box and the intake manifold. It is often attached to or situated close to the mass airflow sensor. The biggest part within the throttle body is a butterfly valve referred to as the throttle plate. The throttle plate's main function is so as to regulate air flow.

On many kinds of cars, the accelerator pedal motion is communicated via the throttle cable. This activates the throttle linkages that in turn move the throttle plate. In automobiles with electronic throttle control, otherwise called "drive-by-wire" an electric motor regulates the throttle linkages. The accelerator pedal connects to a sensor and not to the throttle body. This particular sensor sends the pedal position to the ECU or otherwise known as Engine Control Unit. The ECU is responsible for determining the throttle opening based on accelerator pedal position together with inputs from different engine sensors. The throttle body has a throttle position sensor. The throttle cable connects to the black portion on the left hand side which is curved in design. The copper coil placed next to this is what returns the throttle body to its idle position when the pedal is released.

The throttle plate revolves inside the throttle body each and every time the driver applies pressure on the accelerator pedal. This opens the throttle passage and allows a lot more air to be able to flow into the intake manifold. Normally, an airflow sensor measures this adjustment and communicates with the ECU. In response, the Engine Control Unit then increases the amount of fluid being sent to the fuel injectors so as to produce the desired air-fuel ratio. Frequently a throttle position sensor or likewise called TPS is connected to the shaft of the throttle plate to be able to provide the ECU with information on whether the throttle is in the wide-open throttle or also called "WOT" position, the idle position or somewhere in between these two extremes.

Various throttle bodies could include valves and adjustments in order to regulate the lowest amount of airflow throughout the idle period. Even in units which are not "drive-by-wire" there will often be a small electric motor driven valve, the Idle Air Control Valve or otherwise called IACV that the ECU utilizes to regulate the amount of air that can bypass the main throttle opening.

In many vehicles it is normal for them to contain one throttle body. In order to improve throttle response, more than one can be used and attached together by linkages. High performance vehicles such as the BMW M1, together with high performance motorcycles like the Suzuki Hayabusa have a separate throttle body for each cylinder. These models are referred to as ITBs or likewise known as "individual throttle bodies."

A throttle body is similar to the carburetor in a non-injected engine. Carburetors combine the functionality of the throttle body and the fuel injectors into one. They operate by combining the air and fuel together and by controlling the amount of air flow. Automobiles that have throttle body injection, that is referred to as CFI by Ford and TBI by GM, put the fuel injectors inside the throttle body. This allows an older engine the opportunity to be converted from carburetor to fuel injection without really altering the engine design.